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Abstract

The Darboux transformation is used to obtain multisoliton solutions of the chiral
model in two dimensions. The matrix solutions of the principal chiral model
and its Lax pair are expressed in terms of quasideterminants. The iteration of
the Darboux transformation gives the quasideterminant multisoliton solutions
of the model. It has been shown that the quasideterminant multisoliton solution
of the chiral model is the same as obtained by Zakharov and Mikhailov using
the dressing method based on the matrix Riemann–Hilbert problem.

PACS numbers: 11.10.Nx, 02.30.Ik

1. Introduction

The principal chiral model (chiral field taking values in a Lie group) is a well-known example
of integrable models of relativistically invariant Lagrangian field theories in two dimensions
[1–5]. The principal chiral models belong to a more general family of two-dimensional
integrable field theories, known as symmetric space sigma models, where the fundamental
fields take values in symmetric spaces as their target spaces. The soliton solutions of various
sigma models have been obtained using the inverse scattering method, and the multisoliton
solutions are obtained by means of Darboux–Backlund transformations [1–11]. In this
paper, we study the Darboux transformation of the principal chiral model based on some
Lie group and express their soliton solutions in terms of quasideterminants. We show that
the matrix solutions of the principal chiral model and those of its associated Lax pair are
expressed in terms of quasideterminants. The Darboux transformation also leads to the
quasideterminant expressions of the conserved currents of the chiral field. We also obtain
the quasideterminant multisoliton solutions of the chiral model from the K times iteration of
the Darboux transformations and relate the quasideterminant multisoliton solutions of the
chiral field with the well-known solutions of Zakharov and Mikhailov [4] obtained by the
matrix Riemann–Hilbert problem. At the end, we discuss the solution of the chiral model
based on the Lie group SU(2). We also study the asymptotic behaviour of the solution.
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The principal chiral field g(x) with values in some Lie group G is governed by the
Lagrangian1

L = 1
2 Tr(∂+g

−1∂−g), (1.1)

with g−1g = gg−1 = I . The G-valued field g(x+, x−) can be expressed as

g(x+, x−) ≡ eiπaT
a = 1 + iπaT

a + 1
2 (iπaT

a)2 + · · · , (1.2)

where πa is in the Lie algebra g of the Lie group G and T a, a = 1, 2, 3, . . . , dimg, are anti-
Hermitian matrices with normalization Tr(T aT b) = −δab and are the generators of G in the
fundamental representation satisfying

[T a, T b] = f abcT c, (1.3)

where f abc are the structure constants of the Lie algebra g. For any X ∈ g, we write X = XaT a

and Xa = −Tr(T aX). The action (1.1) is invariant under a global continuous symmetry

GL × GR : g(x+, x−) �−→ UgV −1, (1.4)

where U ∈ GL and V ∈ GR. The Noether conserved current associated with the GR

transformation is j± = −g−1∂±g, which takes values in the Lie algebra g, so that one
can decompose the current into components j±(x+, x−) = ja

±(x+, x−)T a. The conserved
current corresponding to the GL transformation is −gj±g−1. The equation of motion of the
principal chiral model is the conservation equation and the zero curvature condition

∂+j− + ∂−j+ = 0, (1.5)

∂−j+ − ∂+j− + [j+, j−] = 0. (1.6)

The equations of motion (1.5) and (1.6) can be written as the compatibility condition of the
following Lax pair,

∂+V (λ) = 1

1 − λ
j+V (λ), (1.7)

∂−V (λ) = 1

1 + λ
j−V (λ), (1.8)

where λ is a real (or complex) parameter and V is an invertible N × N matrix, in general.
We solve the Lax pair to find the matrix solution V (λ) such that V (0) = g. If we have any
collection (V (λ), j±) which solves the Lax pair (1.7) and (1.8), then V (0) = g solves the
chiral field equation (1.5). In the following section, we define the Darboux transformation
via a Darboux matrix on matrix solutions V of the Lax pair (1.7) and (1.8). To write down
the explicit expressions for matrix solutions of the chiral model, we will use the notion of
quasideterminant introduced by Gelfand and Retakh [21–25].

Let X be an N × N matrix over a ring R (noncommutative, in general). For any
1 � i, j � N , let ri be the ith row and cj be the j th column of X. There exist N2

quasideterminants denoted by |X|ij for i, j = 1, . . . , N and are defined by

|X|ij =
∣∣∣∣∣X

ij ci
j

r
j

i

xij

∣∣∣∣∣ = xij − r
j

i (Xij )−1ci
j , (1.9)

where xij is the ij th entry of X, r
j

i represents the ith row of X without the j th entry, ci
j

represents the j th column of X without the ith entry and Xij is the submatrix of X obtained

1 The spacetime conventions are such that the light-cone coordinates x± are related to the orthonormal coordinates
by x± = 1

2 (t ± x) with derivatives ∂± = 1
2 (∂t ± ∂x).
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by removing from X the ith row and the j th column. The quasideterminants are also denoted
by the following notation. If the ring R is commutative, i.e., the entries of the matrix X all
commute, then

|X|ij = (−1)i+j det X

det Xij
. (1.10)

For a detailed account of quasideterminants and their properties see, e.g., [21–25]. In this
paper, we will consider only quasideterminants that are expanded about an N ×N matrix over
a commutative ring. Let(

A B

C D

)
be a block decomposition of any K × K matrix where the matrix D is N × N and A is
invertible. The ring R in this case is the (noncommutative) ring of N × N matrices over
another commutative ring. The quasideterminant of the K × K matrix expanded about the
N × N matrix D is defined by∣∣∣∣∣A B

C D

∣∣∣∣∣ = D − CA−1B. (1.11)

An important property of quasideterminants is the noncommutative Jacobi identity. For a
general quasideterminant expanded about an N × N matrix D, we have∣∣∣∣∣∣∣

E F G

H A B

J C D

∣∣∣∣∣∣∣ =
∣∣∣∣∣E G

J D

∣∣∣∣∣ −
∣∣∣∣∣E F

J C

∣∣∣∣∣
∣∣∣∣∣E F

H A

∣∣∣∣∣
−1 ∣∣∣∣∣E G

H B

∣∣∣∣∣ . (1.12)

From the noncommutative Jacobi identity, we get the homological relation∣∣∣∣∣∣∣
E F G

H A B

J C D

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
E F O

H A O

J C I

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E F G

H A B

J C D

∣∣∣∣∣∣∣ , (1.13)

where O and I denote the null and identity matrices, respectively. The quasideterminants have
found various applications in the theory of integrable systems, where the multisoliton solutions
of various noncommutative integrable systems are expressed in terms of quasideterminants
(see, e.g., [26–33]).

2. Darboux transformation

The Darboux transformation is one of the well-known methods of obtaining multisoliton
solutions of integrable systems [18–20]. We define the Darboux transformation on the matrix
solutions of the Lax pair (1.7) and (1.8), in terms of an N × N matrix D(x+, x−, λ), called
the Darboux matrix. For a general discussion on the Darboux matrix approach see, e.g.,
[12–17]. The Darboux matrix relates the two matrix solutions of the Lax pair (1.7) and (1.8)
in such a way that the Lax pair is covariant under the Darboux transformation. The Darboux
transformation on the matrix solution of the Lax pair (1.7) and (1.8) is defined by

Ṽ (λ) = D(x+, x−, λ)V (λ). (2.1)

For the Lax pair (1.7) and (1.8) to be covariant under the Darboux transformation (2.1), we
require

3
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∂+Ṽ (λ) = 1

1 − λ
j̃+Ṽ (λ), (2.2)

∂−Ṽ (λ) = 1

1 + λ
j̃−Ṽ (λ). (2.3)

By substituting equation (2.1) into equations (2.2) and (2.3), we get the following condition
on the Darboux matrix D(λ):

∂±D(λ)V (λ) + D(λ)
1

1 ∓ λ
j±V (λ) = 1

1 ∓ λ
j̃±D(λ)V (λ). (2.4)

For our system, we make the following ansatz for the Darboux matrix,

D(x+, x−, λ) = λI − S(x+, x−), (2.5)

where S(x+, x−) is some N × N matrix to be determined and I is an N × N identity matrix.
Note that we consider here the Darboux matrix of degree 1 which is linear in λ. Therefore,
to construct the Darboux matrix D(x+, x−, λ), it is only necessary to determine the matrix
S(x+, x−). Now substituting (2.1) into equation (2.4) and using (1.7) and (1.8), we get the
following Darboux transformation for the Lie algebra valued conserved currents j̃±:

j̃+ = j+ + ∂+S,

j̃− = j− − ∂−S,
(2.6)

and the matrix S is subjected to satisfy the following conditions:

∂+S(I − S) = [j+, S], (2.7)

∂−S(I + S) = [j−, S]. (2.8)

These new transformed currents are also conserved and curvature free, i.e.,

∂+j̃− + ∂−j̃+ = 0, (2.9)

∂−j̃+ − ∂+j̃− + [j̃+, j̃−] = 0. (2.10)

Now we proceed to determine the matrix S so that the explicit Darboux transformation in
terms of particular solutions of the Lax pair can be constructed.

Let λ1, . . . , λN, be N distinct real (or complex) constant parameters and λi �= ±1; i =
1, 2, . . . , N. Let us also define N constant column vectors |1〉, |2〉, . . . , |N〉, such that

M = (V (λ1)|1〉, . . . , V (λN)|N〉) = (|m1〉, . . . , |mN 〉) (2.11)

is an invertible N × N matrix. Each column |mi〉 = V (λi)|i〉 in M is a column solution of the
Lax pair (1.7) and (1.8) when λ = λi. That is, it satisfies

∂+|mi〉 = 1

1 − λi

j+|mi〉, (2.12)

∂−|mi〉 = 1

1 + λi

j−|mi〉, (2.13)

and i = 1, 2, . . . , N . If we define an N × N matrix of particular eigenvalues as

� = diag(λ1, . . . , λN), (2.14)

then the Lax pair (2.12) and (2.13) can be written in the N × N matrix form as

4
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∂+M = j+M(I − �)−1, (2.15)

∂−M = j−M(I + �)−1, (2.16)

where the N × N matrix M is a particular matrix solution of the Lax pair (1.7) and (1.8) with
� being a matrix of particular eigenvalues. In terms of particular matrix solution M of the Lax
pair (1.7) and (1.8), we define the matrix S as

S = M�M−1. (2.17)

Now we show that the matrix S defined in (2.17), satisfies equations (2.7) and (2.8). First, we
take the x+ derivative of the matrix (2.17) so that we have

∂+S = ∂+(M�M−1),

= ∂+M�M−1 + M�∂+(M
−1),

= j+M(I − �)−1�M−1 − M�M−1j+M(I − �)−1M−1,

= −j+ + M(I − �)M−1j+M(I − �)−1M−1,

= −j+ + (I − S)j+(I − S)−1, (2.18)

which is equation (2.7). Similarly, operating ∂− on (2.17), we get

∂−S = j− − (I + S)j−(I + S)−1, (2.19)

which is nothing but equation (2.8). This shows that the choice (2.17) of the matrix S satisfies
all the conditions imposed by the covariance of the Lax pair under the Darboux transformation.
Therefore, we say that the transformation,

Ṽ = (λI − M�M−1)V ,

j̃± = M(I ∓ �)M−1j±M(I ∓ �)−1M−1,
(2.20)

is the required Darboux transformation of the chiral model in terms of the particular matrix
solution M with the particular eigenvalue matrix �. Let us now introduce a primitive field F±
such that j± = F±F−1

± , which transforms in a simple way under the Darboux transformation,
i.e.,

F̃± = M(I ∓ �)M−1F±. (2.21)

The Darboux transformation on the chiral field g(x) is now defined by

g̃ = Ṽ (0) = −(M�M−1)g. (2.22)

Since we have assumed M to be invertible, therefore, we require that detM �= 0. At this
stage, we conclude that if the collection (V , j±) is a solution of the Lax pair (1.7) and (1.8)
and the matrix S is defined by (2.17), then (Ṽ , j̃±) defined by (2.20) by means of Darboux
transformation (2.5) is also a solution of the same Lax pair. This establishes the covariance of
the Lax pair (1.7) and (1.8) under the Darboux transformation (2.5).

If the chiral fields take values in the Lie group U(N), then we also require for the new
solutions to take values in U(N). We know that the Lie group U(N) consists of all N × N

matrices g such that g† = g−1. An arbitrary matrix X belongs to the Lie algebra u(N)

of the Lie group U(N) if and only if X† = −X. Since the currents j± are u(N) valued,
therefore, we require that the new currents j̃± obtained by the Darboux transformation must
be u(N) valued, i.e., they must be anti-Hermitian. This leads to the following condition on the
matrix S:

∂±(S + S†) = 0. (2.23)

5
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For the matrix S to satisfy (2.23), we proceed by taking specific values of parameters λi . Let
μ be a non-zero complex number and λi = μ(i = 1, 2, . . . , N). Now choose |i〉 such that

〈mi |mj 〉 = 0 for λi �= λj (2.24)

holds everywhere, and |mi〉 are all linearly independent. From the definition of the matrix S,

it can be observed that

〈mi |(S† + S)|mj 〉 = (λ̄i + λj )〈mi |mj 〉, (2.25)

implying that 〈mi |mj 〉 = 0, when λi �= λj . If λi = λj = μ, we have

〈mi |(S† + S)|mj 〉 = 〈mi |(μ + μ̄)|mj 〉. (2.26)

Since |mi〉’s are all linearly independent, therefore, equation (2.26) implies

(S† + S) = (μ + μ̄)I, (2.27)

which further implies (2.23). Again from the Lax pair (1.7) and (1.8), we have

〈mi |S†S|mj 〉 = 〈mi |λ̄iλj |mj 〉,
thus, if λi = μ,

S†S = μ̄μ. (2.28)

For the Lie group SU(N), we have to impose further condition on the new conserved currents
j̃±. We know that the Lie group SU(N) consists of all N ×N matrices g such that g ∈ U(N)

and detg = 1. An arbitrary matrix X belongs to the Lie algebra su(N) of the group SU(N), if
and only if Tr X = 0. So if the chiral field g(x) takes values in SU(N), then we also require
that Tr j± = 0, Tr j̃± = 0; and for this to be the case, the matrix S is required to satisfy

Tr ∂±S = 0. (2.29)

The condition Tr ∂±S = 0 is satisfied by equations (2.18) and (2.19), using the cyclicity of
trace.

We impose the reality condition on solutions V (λ) of the Lax pair (1.7) and (1.8)

V †(λ̄)V (λ) = V †(λ̄)V (λ) ∈ Span{I }, (2.30)

where I is an N × N unit matrix and Span{I } is the subspace of the underlying Lie group
spanned by I. To obtain well-defined transformed solutions, the Darboux transformation must
preserve this reality condition, i.e.,

Ṽ †(λ̄)Ṽ (λ) ∈ Span{I }. (2.31)

Using (2.1) and (2.5), also making use of (2.28) and (2.27), we see that

Ṽ †(λ̄)Ṽ (λ) = (λ2 − λ(μ + μ̄) + μμ̄)V †(λ̄)V (λ) ∈ Span{I },
i.e., the transformed solution satisfies the reality condition, or in other words, the Darboux
transformation preserves the reality condition (2.31). In the following section, we will
express the solutions of the chiral model obtained by the Darboux transformation in terms of
quasideterminants that are expanded about an N × N matrix over a commutative ring.

6
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3. Quasideterminant solutions

Since the particular solution M of the Lax pair (1.7) and (1.8) is an invertible N × N

matrix, therefore we can express the Darboux transformations (2.20) and (2.22) in terms
of quasideterminants. The Darboux transformed solution Ṽ of the Lax pair (1.7) and (1.8) is
expressed as

Ṽ = (λI − S)V = (λI − M�M−1)V ,

=
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣ V, (3.1)

and the chiral field g̃ is expressed as

g̃ = Ṽ (0) = −Sg = −(M�M−1)g =
∣∣∣∣∣ M I

M� O

∣∣∣∣∣ g. (3.2)

Similarly from (2.21) the conserved currents j̃± are expressed as

j̃± = F̃±F̃−1
± =

∣∣∣∣∣ M I

M(I ∓ �) O

∣∣∣∣∣ j±

∣∣∣∣∣ M I

M(I ∓ �) O

∣∣∣∣∣
−1

. (3.3)

For the next iteration of the Darboux transformation, we take M1,M2 to be two particular
solutions of the Lax pair (2.15) and (2.16) at � = �1 and � = �2, respectively. Using the
notation V [1] = V, g[1] = g, j±[1] = j±, F±[1] = F± and V [2] = Ṽ , g[2] = g̃, j±[2] =
j̃±, F±[2] = F̃±, we write the two-fold Darboux transformation on V as

V [3] = (λI − S[2]) (λI − S[1]) V = (λI − S[2])V [2],

where S[1] = M1�1M
−1
1 . By writing S[2] = M[2]�2M[2]−1, we get

V [3] = (λI − M[2]�2M[2]−1)V [2], (3.4)

where M[2] = V [2]|V →M2 , so that after the action of λI − S[1], the vector
∣∣m(2)

j

〉
transforms

as
(
λ

(2)
j I − S[1]

)∣∣m(2)
j

〉
. Therefore, we have

M[2] = (M2�2 − S[1]M2) =
∣∣∣∣∣ M1 M2

M1�1
M2�2

∣∣∣∣∣ . (3.5)

By using equations (3.1) and (3.5) in (3.4), we get

V [3] = λ

∣∣∣∣∣ M1 I

M1�1
λI

∣∣∣∣∣ V −
∣∣∣∣∣ M1 M2

M1�1
M2�2

∣∣∣∣∣ �2

∣∣∣∣∣ M1 M2

M1�1
M2�2

∣∣∣∣∣
−1 ∣∣∣∣∣ M1 I

M1�1
λI

∣∣∣∣∣V,

=
∣∣∣∣∣M1�1 λV

M1�
2
1

λ2V

∣∣∣∣∣ −
∣∣∣∣∣∣
M1�1 M2�2

M1�
2
1

M2�
2
2

∣∣∣∣∣∣
∣∣∣∣∣M1�1 M2�2

M1
M2

∣∣∣∣∣
−1 ∣∣∣∣∣M1�1 λV

M1
V

∣∣∣∣∣ ,
=

∣∣∣∣∣∣∣
M1 M2 I

M1�1 M2�2 λI

M1�
2
1 M2�

2
2

λ2I

∣∣∣∣∣∣∣ V, (3.6)

where we have used homological relation (1.13) in the second step and the noncommutative
Jacobi identity (1.12) in the last step.

Similarly, the two-fold Darboux transformation on conserved currents j± gives

j±[3] = F±[3]F±[3]−1, (3.7)

7
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where the factor F±[3] is expressed in terms of quasideterminants as

F±[3] = (M[2](I ∓ �2)M[2]−1)(M[1](I ∓ �1)M[1]−1)F±

= −
∣∣∣∣∣ M1 M2

M1�1
M2�2

∣∣∣∣∣ (I ∓ �2)

∣∣∣∣∣ M1 M2

M1�1
M2�2

∣∣∣∣∣
−1 ∣∣∣∣∣ M1 I

M1(I ∓ �1)
O

∣∣∣∣∣F±

= −
∣∣∣∣∣ M1 M2

M1(I ∓ �1)
M2(I ∓ �2)

∣∣∣∣∣ (I ∓ �2)

×
∣∣∣∣∣ M1 M2

M1(I ∓ �1)
M2(I ∓ �2)

∣∣∣∣∣
−1 ∣∣∣∣∣ M1 I

M1(I ∓ �1)
O

∣∣∣∣∣ F±

= −
∣∣∣∣∣∣

M1 M2(I ∓ �2)

M1(I ∓ �1)
M2(I ∓ �2)

2

∣∣∣∣∣∣
∣∣∣∣∣ M1 M2

M1(I ∓ �1)
M2(I ∓ �2)

∣∣∣∣∣
−1

×
∣∣∣∣∣ M1 I

M1(I ∓ �1)
O

∣∣∣∣∣F±

=

∣∣∣∣∣∣∣
M1 M2 I

M1(I ∓ �1) M2(I ∓ �2) O

M1(I ∓ �1)
2 M2(I ∓ �2)

2 O

∣∣∣∣∣∣∣ F±,

where we have used the homological relation (1.13) and noncommutative Jacobi identity
(1.12) for obtaining the last step.

We can iterate the Darboux transformation K times and obtain the quasideterminant
multisoliton solution of the chiral model. For each k = 1, 2, . . . , K , let Mk be an invertible
N × N matrix solution of the Lax pair (1.7) and (1.8) at � = �k , then the Kth solution
V [K + 1] is expressed as

V [K + 1] =
K∏

k=1

(λI − S[K − k + 1])V =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1
λI

∣∣∣∣∣ V,

= λV [K] − M[K]�KM[K]−1V [K],

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1�1 M2�2 · · · MK�K λI

M1�
2
1 M2�

2
2 · · · MK�2

K λ2I

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K
λKI

∣∣∣∣∣∣∣∣∣∣∣∣∣
V. (3.8)

The above results can be proved by induction using the properties of quasideterminants. First,
we see that the result (3.8) is true for K = 1 and gives equation (3.1) directly. Next, we
consider

V [K + 2] = (λI − S[K + 1])V [K + 1],

= λV [K + 1] − S[K + 1]V [K + 1],

= λV [K + 1] − M[K + 1]�K+1M[K + 1]−1V [K + 1]. (3.9)

8
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By using equation (3.8) in the expression (3.9) and using the fact that M[i] = V [i]|V →Mi
,

we get

V [K + 2] =

∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK λI

M1�1 M2�2 · · · MK�K λ2I

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K
λKI

∣∣∣∣∣∣∣∣∣∣
V

−

∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK MK+1

M1�1 M2�2 · · · MK�K MK+1�K+1

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K

MK+1�
K
K+1

∣∣∣∣∣∣∣∣∣∣∣
�K+1

×

∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK MK+1

M1�1 M2�2 · · · MK�K MK+1�K+1

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K

MK+1�
K
K+1

∣∣∣∣∣∣∣∣∣∣∣

−1

×

∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK λI

M1�1 M2�2 · · · MK�K λ2I

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K
λKI

∣∣∣∣∣∣∣∣∣∣
V.

Now rearranging the above expression and using the noncommutative Jacobi identity (1.12)
and homological relations (1.13), we get

V [K + 2] =

∣∣∣∣∣∣∣∣∣∣

M1�1 M2�2 · · · MK�K λV

M1�
2
1 M2�

2
2 · · · MK�2

K λ2V

...
... · · · ...

...

M1�
K+1
1 M2�

K+1
2 · · · MK�K+1

K
λKV

∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣

M1�1 M2�2 · · · MK�K MK+1�K+1

M1�
2
1 M2�

2
2 · · · MK�2

K MK+1�
2
K+1

...
... · · · ...

...

M1�
K+1
1 M2�

K+1
2 · · · MK�K+1

K

MK+1�
K+1
K+1

∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1�1 M2�2 · · · MK�K MK+1�K+1

M1�
2
1 M2�

2
2 · · · MK�2

K MK+1�
2
K+1

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K MK+1�
K
K+1

M1 M2 · · · MK
MK+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

9
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×

∣∣∣∣∣∣∣∣∣∣∣∣

M1�1 M2�2 · · · MK�K λV

M1�1 M2�2 · · · MK�K λ2V

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K λKV

M1 M2 · · · MK
V

∣∣∣∣∣∣∣∣∣∣∣∣
,

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK+1 I

M1�1 M2�2 · · · MK+1�K+1 λI

M1�
2
1 M2�

2
2 · · · MK+1�

2
K+1 λ2I

...
... · · · ...

...

M1�
K+1
1 M2�

K+1
2 · · · MK+1�

K+1
K+1

λK+1I

∣∣∣∣∣∣∣∣∣∣∣∣∣
V. (3.10)

Therefore (3.8) is verified. The multisoliton solution g[K + 1] of the chiral model can be
readily obtained by taking λ = 0 in the expression of V [K + 1], i.e.,

g[K + 1] =
K∏

k=1

(−1)kS[K − k + 1]g =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1
O

∣∣∣∣∣ g,

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1�1 M2�2 · · · MK�K O

M1�
2
1 M2�

2
2 · · · MK�2

K O

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K
O

∣∣∣∣∣∣∣∣∣∣∣∣
g. (3.11)

Similarly, the K times iteration of the Darboux transformation gives the following expression
of the conserved currents,

j±[K + 1] = F±[K + 1]F±[K + 1]−1, (3.12)

where

F±[K + 1] = (I ∓ S[K]) · · · (I ∓ S[2])(I ∓ S[1])F±,

×
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1](I ∓ �K−k+1)
O

∣∣∣∣∣F±, (3.13)

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1(I ∓ �1) M2(I ∓ �2) · · · MK(I ∓ �K) O

M1(I ∓ �1)
2 M2(I ∓ �2)

2 · · · MK(I ∓ �K)2 O

...
... · · · ...

...

M1(I ∓ �1)
K M2(I ∓ �2)

K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣∣∣
F±. (3.14)

The expression (3.14) can also be proved by induction in the same way as we did for (3.8).
Hence, we see that equations (3.13) and (3.14) together with (3.12) are the required expressions
of Kth conserved currents of the chiral model expressed in terms of quasideterminants
involving particular solutions of the linear problem associated with the chiral model. Note that
equations (3.8) and (3.11) are the required quasideterminant expressions for the Kth iteration
of V and g.

10
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4. Relation with Zakharov–Mikhailov’s dressing method

In this section, we relate the quasideterminant multisoliton solutions of the previous section
with the solutions obtained by Zakharov and Mikhailov using an equivalent method known
as the dressing method. In the original approach of Zakharov and Mikhailov, the analytical
properties of the matrix function D(λ) (now referred to as dressing function) are studied
in the complex λ-plane. In fact, the dressing function D(λ) in the Zakharov–Mikhailov
approach is equivalent to (λ − μ)−1D(λ), where D(λ) is the Darboux matrix (2.5). Note that
equation (2.4) remains invariant, if the Darboux-dressing matrix is multiplied by a scalar factor.
In particular, it is required that D(λ) should be meromorphic and D(λ) → I as λ → ±∞.
In other words, we say that the matrix function D(λ) has a pole at some λ or any entry of
D(λ) has a pole at that particular value of λ. If we take the simple case, in which D(λ) has a
single pole at λ = μ, the dressing function D(λ) is expressed in terms of a Hermitian projector
P. In what follows, we show that our Darboux matrix expressed as a quasideterminant can
be written in terms of the Hermitian projection operator, resulting in a solution of the chiral
model without much use of analytical properties of matrix functions involved.

The Darboux matrix (2.5) can also be written in terms of the projector. For this purpose,
we make use of equation (2.25), i.e., we write

S|mi〉 = λi |mi〉, i = 1, 2, . . . , n

S|mj 〉 = λ̄j |mj 〉, j = n + 1, n + 2, . . . , N.

Now, we set λi = μ and λj = μ̄ so that the matrix S may be written as

S = μP + μ̄P ⊥, (4.1)

where P is the Hermitian projector, i.e., P † = P. Also we have P 2 = P and P ⊥ = I −P. The
projector P is completely characterized by two subspaces U = Im P and W = Ker P given
by the condition P ⊥U = 0 and PW = 0, so that P is defined as a Hermitian projection on a
complex subspace and P ⊥ = I − P as projection on the orthogonal space. Now the matrix S
is expressed as

S = μP + μ̄(I − P),

= (μ − μ̄)P + μ̄I. (4.2)

The Darboux matrix which is expressed as a quasideterminant in the previous section can now
be written as

D(λ) =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣
= λI − (μ − μ̄)P − μ̄I,

= (λ − μ̄)I − (μ − μ̄)P,

= (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
. (4.3)

In the expression (4.3), the Darboux-dressing function, expressed as quasideterminant
containing the particular matrix solution M of the Lax pair (1.7) and (1.8), is shown to
be expressed in terms of a Hermitian projector P defined in terms of the particular column
solutions |mi〉 of the Lax pair. The Darboux-dressing function (4.3) can also be used to obtain
the multisoliton solution of the system. For the case of models based on Lie groups of N × N

matrices, we set λi = μ, (i = 1, 2, . . . , n) and λj = μ̄, (j = n + 1, . . . , N), so that the

11
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solution V [2] is given by

V [2] =
⎛⎝λI − μ

n∑
i=1

|mi〉〈mi |
〈mi |mi〉 − μ̄

N∑
j=n+1

|mj 〉〈mj |
〈mj |mj 〉

⎞⎠ V,

= (λ − μ̄)

(
I − μ − μ̄

λ − μ̄

n∑
i=1

|mi〉〈mi |
〈mi |mi〉

)
V = (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
V.

The Kth time iteration then gives the Kth solution V [K + 1] of the Lax pair

V [K + 1] =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1
λI

∣∣∣∣∣V,

=
K∏

k=1

(λ − μ̄K−k+1)

(
I − μK−k+1 − μ̄K−k+1

λ − μ̄K−k+1
P [K − k + 1]

)
V, (4.4)

with the (K + 1)th soliton solution g[K + 1] of the chiral model given by

g[K + 1] =
K∏

k=1

(−μ̄K−k+1)

(
I +

μK−k+1 − μ̄K−k+1

μ̄K−k+1
P [K − k + 1]

)
V, (4.5)

where the Hermitian projection in this case is

P [k] =
n∑

i=1

|mi[k]〉 〈mi[k]|
〈mi[k]| mi[k]〉 , k = 1, 2, . . . , K,

with

|mi[k]〉 = (
λ

(k)
i I − S[k − 1]

)∣∣m(k)
i

〉
,

and the kth particular matrix solution Mk of the Lax pair is written in terms of kth particular
column solutions as

Mk = (∣∣m(k)
1

〉
,
∣∣m(k)

2

〉
, . . .

∣∣m(k)
N

〉)
. (4.6)

Now the expressions for the transformed currents j±[K + 1] are given by

j±[K + 1] =
K∏

k=1

(
I ∓ (μK−k+1 − μ̄K−k+1)

(1 ∓ μ̄K−k+1)
P [K − k + 1]

)
j±

K∏
l=1

(
I ∓ (μ̄l − μl)

(1 ∓ μl)
P [l]

)
.

(4.7)

The expressions (4.4), (4.5) and (4.7) can also be written as sum of K terms by using the
condition that V [K] = 0 if λ = μi, V = |mi〉. The method is illustrated in [1] (also see [34]
for reference). The final expressions for V [K + 1], g[K + 1] and j±[K + 1] are then given as

V [K + 1] =
K∑

k,l=1

(λ − μ̄k)

(
I − Rk

λ − μ̄k

)
V, (4.8)

g[K] =
K∑

k,l=1

(−μ̄k)

(
I +

Rk

μ̄k

)
g, (4.9)

j±[K] =
K∑

k=1

(
I ∓ Rk

1 ∓ μ̄k

)
j±

K∑
l=1

(
I ∓ Rl

1 ∓ μl

)
, (4.10)
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where the function Rk is defined by

Rk =
K∑

l=1

(μl − μ̄k)

n∑
i=1

∣∣m(k)
i

〉〈
m

(l)
i

∣∣〈
m

(k)
i

∣∣m(l)
i

〉 . (4.11)

By expanding the right-hand side in equation (4.8) and using (2.24), we see that the two
expressions for the Kth iteration of V , i.e., equations (3.8) and (4.8) are equivalent.

5. The SU (2) model

In this section, we briefly discuss how to calculate the soliton solution of the principal chiral
model based on the Lie group SU(2) using the method outlined in the previous section. For
the SU(2) case, the solution has been obtained in [4]. Let us first calculate the one-soliton
solution of the chiral model using the dressing (Darboux) matrix (4.3). The matrix solution
V [1] of the Lax pair (1.7) and (1.8) is given by

Ṽ = (λI − M�M−1)V . (5.1)

Now for the N = 2 case, the particular solution M of the Lax pair (1.7) and (1.8) is
given by an invertible 2 × 2 matrix expressed in terms of column solutions |m1〉 and |m2〉:
M = (|m1〉 |m2〉). We take the 2 × 2 eigenvalue matrix � to be � = (

μ 0
0 μ̄

)
, where we have

taken λ1 = μ and λ2 = μ̄. With this the solution V [2] is written as

Ṽ =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣ V =
(

λI − μ
|m1〉〈m1|
〈m1|m1〉 + μ̄

|m2〉〈m2|
〈m2|m2〉

)
V

= (λI − μP − μ̄P ⊥)V = (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
V,

where the Hermitian projection is P = |m1〉〈m1|
〈m1| m1〉 , with the orthogonal projection P ⊥ = I −P =

|m2〉〈m2|
〈m2| m2〉 . The Darboux matrix D(λ) as a quasideterminant may be expressed in terms of the
Hermitian projection and orthogonal projection as

D(λ) =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣ = (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
= (λ − μ̄)

(
P ⊥ +

λ − μ

λ − μ̄
P

)
. (5.2)

The one-soliton solution g̃ in this case is given by

g̃ =
∣∣∣∣∣ M I

M� O

∣∣∣∣∣ g = −μ̄

(
I +

μ − μ̄

μ̄
P

)
g = −μ̄

(
P ⊥ +

μ

μ̄
P

)
. (5.3)

For the construction of explicit solution in the matrix form using the Darboux transformation,
we take the example of G = SU(2). The solutions can be obtained by the Darboux
transformation by taking the trivial solution as the seed solution. We have been considering
the case where j± ∈ su(2), the following discussions, however, are essentially the same for
the Lie algebra u(2). Let us take a most general unimodular 2 × 2 matrix representing an
element of the Lie algebra su(2),(

X Y

−Ȳ X̄

)
,

where Y and X are complex numbers satisfying XX̄ +Y Ȳ = 1. Let j± be the non-zero constant
(commuting) elements of su(2), such that they are represented by anti-Hermitian 2×2 matrices

j+ =
(

ip 0
0 −ip

)
, j− =

(
iq 0
0 −iq

)
, (5.4)
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where p, q are non-zero real numbers. The seed solution is then written as

g(x+, x−) =
(

ei(px++qx−) 0
0 e−i(px++qx−)

)
. (5.5)

The corresponding V (λ) is

V (λ) =
(

ω(λ) 0
0 ω−1(λ)

)
, (5.6)

where

ω(λ) = exp i

(
1

1 − λ
px+ +

1

1 + λ
qx−

)
. (5.7)

In this sense g, j±, and V constitute the seed solution for the Darboux transformation. Taking

λ1 = μ and λ2 = μ̄, we have the following 2×2 matrix solution of the Lax pair at � = (
μ 0
0 μ̄

)
M = (V (μ)|1〉, V (μ̄)|2〉) = (|m1〉, |m2〉),

=
(

ω(μ) ω(μ̄)

−ω−1(μ) ω−1(μ̄)

)
. (5.8)

The reality condition (2.30) on V implies that

ω̄(μ̄) = ω−1(μ),

ω(μ) = ω̄−1(μ̄).
(5.9)

By direct calculations, we note that the S matrix in this case is given by

S = M�M−1,

= 1

er + e−r

(
μ er + μ̄e−r (μ̄ − μ) eis

(μ̄ − μ) e−is μ̄ er + μe−r

)
, (5.10)

where the functions r(x+, x−) and s(x+, x−) are defined by

r(x+, x−) = i

(
1

(1 − μ)
− 1

(1 − μ̄)

)
px+ + i

(
1

(1 + μ)
− 1

(1 + μ̄)

)
qx−,

s(x+, x−) =
(

1

(1 − μ)
+

1

(1 − μ̄)

)
px+ +

(
1

(1 + μ)
+

1

(1 + μ̄)

)
qx−.

(5.11)

Let us take the eigenvalue to be μ = eiθ . The expression (5.10) then becomes

S =
(

cos θ + i sin θ tanh r −i(sin θsechr) eis

−i(sin θ sech r) e−is cos θ − i sin θ tanh r

)
, (5.12)

and the corresponding Darboux matrix D(λ) in this case is

D(λ) =
(

λ − cos θ − i sin θ tanh r i(sin θ sech r) eis

i(sin θ sech r) e−is λ − cos θ + i sin θ tanh r

)
. (5.13)

Comparing the above equation with (4.3), we find the following expression for the projector,

P =
(

2 er sech r −2 eis sech r

−2 e−is sech r 2 e−r sech r

)
, (5.14)

which is the same as obtained in [4]. The solution g̃ of chiral field equations is written as

g̃ = D(λ)|λ=0 g = −Sg, (5.15)

=
(

X̃ Ỹ

−Ỹ X̃

)
g, (5.16)

14
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where the matrix entries are the functions

X̃ = −(cos θ + i sin θ tanh r), (5.17)

Ỹ = i(sin θ sech r) eis . (5.18)

The above expressions indicate that the functions X̃ and Ỹ have a solitonic form. Since we
have

j̃± = (I − S)j±(I − S)−1. (5.19)

Using equations (5.4) and (5.10) in the above equation, we get the expressions for j̃± as

j̃+ =
(

a b

−b̄ ā

)
, j̃− =

(
c d

−d̄ c̄

)
, (5.20)

where

a = ip(1 − (1 + cos θ)sech2r),

b = −ip[(1 + cos θ) tanh r + i sin θ ](sechr) eis ,

c = iq(1 − (1 − cos θ)sech2r),

d = iq[(1 − cos θ) tanh r − i sin θ ](sechr) eis .

Equation (5.20) shows a new solution which we have obtained by starting from an arbitrary
seed solution. By substituting above expressions of a, b, c, d in (5.20), we see that Tr j̃+ =
Tr j̃− = 0. Therefore, j̃± satisfy the additional constraints for g ∈ SU(2). Consequently,
when we use the above equations in (5.20), we get the explicit expressions of the conserved
currents (solutions) j̃± of the chiral models by using the Darboux transformation.

The two-soliton solution of the chiral field is obtained by the application of the two-fold
Darboux transformation˜̃X = A + B

sin θ2 sin θ1(sinh r2 sinh r1 − cos(s2 − s1)) − (1 − cos θ2 cos θ1) cosh r1 cosh r2
,

˜̃Y = C

2[sin θ2 sin θ1(sinh r2 sinh r1 − cos(s2 − s1)) − (1 − cos θ2 cos θ1) cosh r1 cosh r2]]
,

(5.21)

where

A = cos θ2 cosh r2 cosh r1 + i sinh r2 sinh r1(sin θ2 − sin θ1) − i sin θ2 sin2 θ1 sinh r1 sech r1

− cos θ2(cos θ1 cosh r1 − i sin θ1 sinh r1)(cos θ2 cosh r2 + i sin θ2 sinh r2),

B = sin θ2 sin θ1[(cos θ1 − i sin θ1 tanh r1) ei(s1−s2)

+ (−2 cos θ2 + cos θ1 + i sin θ1 tanh r1) e−i(s1−s2)]],

C = −i sin θ2 cosh r1[1 − (cos θ1 + i sin θ1 tanh r1)(2 cos θ2 − cos θ1 − i sin θ1 tanh r1)] eis1

+ i sin θ1 cosh r2[1 + (cos θ2 + i sin θ2 tanh r2)(2 cos θ1 − cos θ2 − i sin θ2 tanh r2)] eis2

+ i sin θ1 sin θ2 eis1(sin θ2sechr2 − sin θ1 sech r1 ei(s1−s2)),

and we use the notation X[3] = ˜̃X and Y [3] = ˜̃Y . We have generated a new solution by starting
from an arbitrary seed solution. We can use the above equations (5.21) to find the expression
for S[2], which can be further used to obtain the explicit expressions of the conserved currents
j±[3].

In the asymptotic limit for t → ±∞, we have r → ±∞, and equation (5.10) becomes

lim
r→±∞ S =

(
ν 0
0 ν̄

)
, (5.22)
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where

ν = μ, for r → +∞
= μ̄, for r → −∞. (5.23)

For μ = eiθ , equation (5.22) becomes

lim
r→±∞ S =

(
e±iθ 0

0 e∓iθ

)
, (5.24)

and the functions X̃ and Ỹ in the solution g̃ of the chiral model given by equations (5.17) and
(5.18) become

lim
r→±∞ X̃ = −e±iθ = −(cos θ ± i sin θ),

lim
r→±∞ Ỹ = 0.

(5.25)

The second iteration of the Darboux transformation can be used in a similar manner, and we
have from equations (5.21)

lim
r→±∞

˜̃X = exp ±i(θ2 + θ1) = (cos(θ2 + θ1) ± i sin(θ2 + θ1))

lim
r→±∞

˜̃Y = 0.
(5.26)

We see that in the asymptotic limit, we get much simpler expressions. Equation (5.26) gives
the asymptotic behaviour of the solution g[3] and it is clear from the above expression that in
the asymptotic limit g[3] i.e. the two-soliton solution splits into two single soliton solutions.
Similarly for the Kth iteration of the Darboux transformation, the multisoliton solution in the
asymptotic limit is given as

lim
r→±∞ g[K + 1] = lim

r→±∞

(
X[K + 1] Y [K + 1]

−Ȳ [K + 1] X̄[K + 1]

)
g, (5.27)

where

lim
r→±∞ X[K + 1] = (−1)K exp ±i(θK + · · · θ1),

= (−1)K (cos (θK + · · · θ1) ± i sin(θK + · · · θ1)) , (5.28)

lim
r→±∞ Y [K + 1] = 0,

which shows that the K-soliton solution g[K + 1] of the chiral model splits into K single
solitons, where g is given by equation (5.5). Note that the ± sign appearing in the expression
(5.28) due to t → ±∞ shows that there is a phase shift in the soliton. Therefore, we see that
when t → ±∞, the asymptotic solution splits up into K single solitons.

From the above calculations we see that in the asymptotic limit S[k] = M[k]�kM[k]−1 →
Mk�kM

−1
k . Therefore in the asymptotic limit, the quasideterminant (3.11) splits into K factors,

i.e.,

lim
r→±∞ g[K + 1] = lim

r→±∞

∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1�1 M2�2 · · · MK�K O

M1�
2
1 M2�

2
2 · · · MK�2

K O

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K
O

∣∣∣∣∣∣∣∣∣∣∣∣
g,

=
∣∣∣∣∣ MK I

MK�K
O

∣∣∣∣∣
∣∣∣∣∣ MK−1 I

MK−1�K−1
O

∣∣∣∣∣ · · ·
∣∣∣∣∣ M1 I

M1�1
O

∣∣∣∣∣ g,
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=
K∏

k=1

(−1)k

∣∣∣∣∣ MK−k+1 I

MK−k+1�K−k+1
O

∣∣∣∣∣ g. (5.29)

We can say that the splitting of the K-soliton solution into K single soliton solutions
asymptotically is in fact equivalent to the factorization of quasideterminant solution (3.11)
into a product of quasideterminants of 2 × 2 matrices over a noncommutative ring R of N ×N

matrices.

6. Concluding remarks

In this paper, we have considered the principal chiral model in two dimensions, based on some
Lie group, and presented the quasideterminant solutions of the chiral model as well as its Lax
pair obtained by means of the Darboux transformation, defined in terms of the Darboux matrix.
We iterated the Darboux transformation to get the quasideterminant multisoliton solutions.
We have also discussed the relation of the Darboux matrix approach with the Zakharov–
Mikhailov’s dressing method, where the Darboux matrix was shown to be expressed in terms
of the Hermitian projector defined in terms of particular column solutions of the Lax pair. At
the end, we calculated the one- and two-soliton solutions for the case of Lie group SU(2).
The asymptotic limit of the solutions in the SU(2) case splits the solution into product of
single solitons. We have also obtained the asymptotic solution of the chiral model in terms
of quasideterminant for the case of Lie group SU(2). It would be interesting to study the
quasideterminant solutions of the supersymmetric chiral models and those of the nonlinear
sigma models based on symmetric spaces. We shall address these issues in a separate work.
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